CP6 Radioactivity

CP6a Atomic models

Step	Learning outcome	Had a look	Nearly there	Nailed it!
7 th	Describe the structure of an atom (in terms of nucleus and electrons).			
7 th	State where most of the mass of an atom is found.			
7 th	State the sizes of atoms and small molecules.			
8 th	Describe an early model of the atom.			
8 th	Describe how and why our model of the atom has changed over time, including the plum pudding model and the Rutherford alpha particle scattering.			

CP6b Inside atoms

Step	Learning outcome	Had a look	Nearly there	Nailed it!
7 th	State what is meant by an isotope.			
8 th	Represent isotopes using symbols.			
8**	Explain how atoms of different elements are different (in terms of numbers of electrons and protons).			
71	Recall the charges and relative masses of the three subatomic particles.			
8 th	Explain why all atoms have no overall charge.			

Sciences

CP6c Electrons and orbits

Step	Learning outcome	Had a look	Nearly there	Nailed it!
7 th	Describe where electrons are found inside atoms (in terms of shells).			
8th	Describe when electrons can change orbit.			
7 th	Recall what an ion is.			
8th	Describe how ionisation occurs.			
8th	Describe some of the evidence for the Bohr model of the atom.			

CP6d Background radiation

Step	Learning outcome	Had a look	Nearly there	Nailed it!
9 th	Explain what background radiation is.			
9 th	Describe how radiation measurements need to be corrected for background radiation.			
8th	List some sources of background radiation.			
8 th	Describe how photographic film can be used to detect radioactivity.			
9th	Describe how a Geiger-Müller tube works.			
84	Describe how the amount of radioactivity can be measured (in terms of the darkness of photographic film or by attaching a counter to a GM tube).			

CP6e Types of radiation

Step	Learning outcome	Had a look	Nearly there	Nailed it!
8 th	List five types of radiation that are emitted in random processes from unstable nuclei.			
8 th	State that the five types of radiation are ionising radiations.			
8th	Describe what alpha and beta particles are.			
8th	Describe the nature of gamma radiation.			
	Compare the penetrating abilities of alpha, beta and gamma radiation.			
110	Compare the ionisation abilities of alpha, beta and gamma radiation.			

Sciences

CP6f Radioactive decay

Step	Learning outcome	Had a look	Nearly there	Nailed it!
9th	Describe the process of β^- decay.			
9th	Describe the process of β^+ decay.			
10	Explain how the proton and mass numbers are affected by different kinds of radioactive decay.			
9**	Describe what happens during nuclear rearrangement after radioactive decay.			
10 th	Balance nuclear equations for mass and charge.			

CP6g Half-life

Step	Learning outcome	Had a look	Nearly there	Nailed it!
8 th	Describe how the activity of a substance changes over time.			
8 th	State how half-life can be used to describe the changing activity of a substance.			
8 th	Recall the unit of activity.			
8 th	Describe how half-life can be used to work out how much of a substance will decay in a certain time.			
10 th	Carry out calculations involving half-life.			

CP6h Dangers of radioactivity

Step	Learning outcome	Had a look	Nearly there	Nailed it!
8th	Describe the hazards of ionising radiation in terms of tissue damage and possible mutations.			
9 th	Explain the precautions taken to reduce the risks from radiation and ensure the safety of patients exposed to radiation.			
9%	Explain the precautions taken to reduce the risks from radiation and protect people who work with radiation.			
9 th	Describe the differences between contamination and irradiation effects.			
	Compare the hazards of contamination and irradiation.			