SP10 Electricity and Circuits

SP10a Electric circuits

Step	Learning outcome	Had a look	Nearly there	Nailed it!
70	Describe the basic structure of an atom (positions, relative masses and relative charges of protons, neutrons and electrons).			
3rd	Recognise the circuit symbols for a range of common electrical components (cells, including batteries, switches, voltmeters, ammeters and lamps).			
4 th	Draw diagrams for circuits containing common electrical components, using conventions for positive and negative terminals.			
5**	Describe and explain the difference between the brightness of identical lamps in series and parallel circuits.			
5 th	Describe and explain the effects of different numbers of identical lamps, cells and switches in series and parallel circuits.			

SP10b Current and potential difference

Step	Learning outcome	Had a look	Nearly there	Nailed it!
4 th	Describe how to measure voltage.			
5 th	Define the term 'potential difference'.			
4 th	Describe how to measure current.			
4 th	Describe the conditions needed to produce an electric current. (A complete circuit and a source of voltage/potential difference.)			
4 th	Describe the behaviour of current at a junction.			

SP10c Current, charge and energy

Step	Learning outcome	Had a look	Nearly there	Nailed it!
6*	Explain the link between the potential difference (voltage) across a battery or a component, the charge passing through it and the amount of energy transferred.			
6*	Recall that the unit of potential difference is the volt and explain it in terms of units of energy and charge (a potential difference of one joule per coulomb).			
8 th	Recall and use the equation to calculate the energy transferred, the charge that flows or the potential difference. ($E = Q \times V$)			
5 th	Explain the link between electric current and electric charge.			
5 th	Explain electric current in metals in terms of electrons.			
7th	Recall and use the equation to calculate the charge that flows, the current or the time the current flows. $(Q = I \times t)$			

SP10d Resistance

Step	Learning outcome	Had a look	Nearly there	Nailed it!
6 th	Explain the link between resistance and current in a circuit.			
5 th	Define the resistance of a component or circuit ($R = V/I$).			
8 th	Recall and use the equation to calculate the potential difference, the current or the resistance ($V = I \times R$).			
6 th	Explain the difference in resistance when two resistors are connected in series or in parallel.			
7 th	Calculate the currents, potential differences and resistances in series circuits.			
5 ^{ch}	Explain the design and construction of series circuits for testing and measuring.			

SP10e More about resistance

Step	Learning outcome	Had a look	Nearly there	Nailed it!
6 th	Explain how current changes with potential difference in fixed resistors.			
6 th	Explain how current and resistance change with potential difference in filament lamps.			
6 th	Explain how current and resistance change with potential difference in diodes, including light-emitting diodes (LEDs).			
61	Describe how the resistance of a light- dependent resistor (LDR) varies with changing light intensity.			
6 th	Describe how the resistance of a thermistor varies with changing temperature. (negative temperature coefficient only)			
5 th	Describe the uses of diodes, LDRs and thermistors.			

SP10f Transferring energy

Step	Learning outcome	Had a look	Nearly there	Nailed it!
5 th	Describe the energy transfer that occurs when a current passes through a resistor.			
7%)	Use the electron and ion model and the idea of electrical work to explain the energy transfer in a resistor and the resulting dissipation of energy in the surroundings.			
5**	Explain how unwanted energy transfers in wires can be avoided.			
5 th	Recall the advantages of the heating effect of an electric current.			
Sth	Recall the disadvantages of the heating effect of an electric current.			
8 th	Use the equation $E = I \times V \times t$ to calculate the energy transferred, the current, the potential difference or the time.			

SP10g Power

Step	Learning outcome	Had a look	Nearly there	Nailed it!
5 th	Define power and the units used to measure it. (energy transferred per second in watts)			
8 th	Recall and use the equation to calculate the power, the energy transferred or the time taken. ($P = E/t$)			
6 th	Explain how power transfer depends on the potential difference across a device and the current through it.			
8 th	Recall and use the equation to calculate the electrical power, the current or the potential difference. ($P = I \times V$)			
81	Recall and use the equation to calculate the electrical power, the current or the resistance. ($P = l^2 \times R$)			

SP10h Transferring energy by electricity

Step	Learning outcome	Had a look	Nearly there	Nailed it!
6 th	Describe energy transfers from d.c. batteries and the a.c. mains supply to motors and heaters.			
6**	Explain the difference between direct and alternating voltage.			
64	Compare alternating and direct current (in terms of movement of charge).			
5th	Recall the frequency and voltage of the UK domestic supply.			
6 **	Describe the power ratings of some domestic electrical appliances and changes in stored energy when they are in use.			

SP10i Electrical safety

Step	Learning outcome	Had a look	Nearly there	Nailed it!
4 th	Explain the difference between the functions of the live and the neutral wires.			
4 th	Explain how circuit breakers make circuits safer.			
4 th	Explain how the earth wire and the fuse make circuits safer.			
4 th	Explain why switches and fuses are connected in the live wire.			
5**	Recall the potential differences between the live, neutral and earth wires.			
4 th	Explain the danger of a connection between the live wire and earth.			

SP11 Static Electricity

Edexcel GCSE (9-1)

Sciences

SP11a Charges and static electricity

Step	Learning outcome	Had a look	Nearly there	Nailed it!
6th	Explain how rubbing an insulator transfers electrons.			
5 th	Recall the charged particles found in an atom.			
70	Explain why, when certain materials are rubbed together, they end up with opposite charges.			
5 th	Recall the rules of attraction and repulsion between charges.			
7th	Explain how attraction by induction occurs.			

SP11b Dangers and uses of static electricity

Step	Learning outcome	Had a look	Nearly there	Nailed it!
5 th	Describe what earthing is.			
6th	Explain how earthing works.			
71	Explain how lightning occurs and why we sometimes get shocks from everyday objects.			
7 th	Explain how electrostatic sprayers work.			
6 th	Describe some hazards caused by charged objects discharging, and how earthing can be used to reduce risks.			

SP11c Electric fields

Step	Learning outcome	Had a look	Nearly there	Nailed it!
Sth	Recall what an electric field is.			
5 th	Recall how the direction of an electric field is defined.			
8th	Interpret information shown by field lines.			
9th	Describe the shape and direction of the electric field around a point charge and between charged electrical plates.			
10**	Explain how static electricity effects can be explained using the idea of an electric field.			