Revision checklist

SP12 Magnetism and the Motor Effect

SP12a Magnets and magnetic fields

Step	Learning outcome	Had a look	Nearly there	Nailed it!
3 rd	Describe how magnets affect each other.			
4 th	Explain the difference between permanent and induced magnets.			
4 th	Describe the uses of permanent and temporary magnetic materials.			
4 th	Describe the shapes of magnetic fields, including variations in strength.			
4 th	Describe how the shape of magnetic fields can be shown using plotting compasses.			
5 th	Explain how a magnetic compass can be used as evidence for the Earth's magnetic core.			

SP12b Electromagnetism

Step	Learning outcome	Had a look	Nearly there	Nailed it!
6 th	Recall that a current can create a magnetic effect.			
7 th	Relate the shape and direction of the magnetic field around a straight wire to the direction of the current.			
6 th	Recall the factors that affect the strength of the magnetic field around a wire.			
7 th	Describe the magnetic field inside and outside a coil of wire carrying a current.			
8 th	Explain the shape and strength of the magnetic field around a solenoid.			

Edexcel GCSE (9-1)

Sciences

Revision checklist

SP12

SP12c Magnetic forces

Step	Learning outcome	Had a look	Nearly there	Nailed it!
6 th	Recall that forces are produced when a current flows in a magnetic field.			
7 th	Explain what causes the forces produced when a current flows in a magnetic field.			
6 th	H Recall Fleming's left-hand rule.			
7 th	■ Use Fleming's left-hand rule.			
8 th	■ Use the formula relating force, magnetic field strength, current and length.			
8 th	Explain how the force on a conductor in a magnetic field is used to cause rotation in electric motors.			

Revision checklist

SP13 Electromagnetic Induction

SP13a Electromagnetic induction

Step	Learning outcome	Had a look	Nearly there	Nailed it!
6 th	Describe how to produce an electric current by induction on a small scale.			
7 th	Describe how electromagnetic induction is used in alternators and dynamos.			
6 th	Describe how different factors affect the size and direction of an induced current.			
7 th	Describe how the magnetic field produced by an induced potential difference opposes the original change.			
7 th	Explain how microphones work in terms of changing pressure variations into variations in electric current.			
7 th	Explain how loudspeakers change variations in current to variations in air pressure.			

SP13b The national grid

Step	Learning outcome	Had a look	Nearly there	Nailed it!
8 th	Explain how a transformer works.			
6 th	Recall that transformers can change the voltage of an alternating current.			
8 th	Use the turns ratio equation for transformers.			
6 th	Describe how the national grid transmits electricity around the country.			
7 th	Explain why step-up and step-down transformers are used in the national grid.			

SP13c Transformers and energy

Step	Learning outcome	Had a look	Nearly there	Nailed it!
5 th	Recall the law of conservation of energy.			
5 th	Recall that the power of an electric current is given by the current multiplied by the voltage.			
8 th	Use the power equation for transformers.			
8 th	Recall and use equations relating current, voltage, power and resistance.			
9 th	■ Use equations to explain the advantages of power transmission in high-voltage cables.			