SP14 Particle Model

SP14a Particles and density

Step	Learning outcome	Had a look	Nearly there	Nailed it!
	Describe the arrangements of particles in solids, liquids and gases.	\square	\square	\square
	Use the particle model to explain the different properties of solids, liquids and gases.	\square	\square	\square
Recall the formula relating density, mass and volume.	\square	\square	\square	
Use the formula relating density, mass and volume.	\square	\square	\square	

SP14b Energy and changes of state

Step	Learning outcome	Had a look	Nearly there	Nailed it!
	Explain how heating affects the particles in a substance or object, including changes of state.	\square	\square	\square
	Describe how the temperature of an object changes with time while being heated or cooled to make it change state.	\square	\square	\square
	\square	\square	\square	

SP14c Energy calculations

Step	Learning outcome	Had a look	Nearly there	Nailed it!
	Use the formula relating change in thermal energy, mass, temperature change and specific heat capacity.	\square	\square	\square
	Use the formula relating thermal energy, mass and specific latent heat.	\square	\square	\square

SP14d Gas temperature and pressure

Step	Learning outcome	Had a look	Nearly there	Nailed it!
${ }^{60 \%}$	Explain how the movement of particles causes gas pressure.	\square	\square	\square
${ }^{604}$	Explain how changing the temperature of a gas affects the speed of its particles.	\square	\square	\square
6	Explain how temperature affects the pressure of a fixed mass of gas at constant volume.	\square	\square	\square
60\%	Explain the significance of absolute zero.	\square	\square	\square
${ }^{6}$	Convert temperatures between the Kelvin and Celsius temperature scales.	\square	\square	\square

SP14e Gas pressure and volume

Step	Learning outcome	Had a look	Nearly there	Nailed it!
	Explain how gases can be compressed or expanded by pressure changes.	\square	\square	\square
	Explain how the pressure of a gas produces a force at right angles to any surface.	\square	\square	\square
	Explain why changing the volume of a gas changes the pressure.	\square	\square	\square
Use the formula relating pressure and volume changes in a gas of fixed mass at constant temperature.	\square	\square	\square	

SP15 Forces and Matter

SP15a Bending and stretching

Step	Learning outcome	Had a look	Nearly there	Nailed it!
$4^{\text {min }}$	Explain that more than one force is needed to distort an object.	\square	\square	\square
$4{ }^{\text {4 }}$	Describe the difference between elastic and inelastic distortion.	\square	\square	\square
$4{ }^{\text {4 }}$	Describe the relationship between force and extension for a spring.	\square	\square	\square
$4{ }^{\text {din }}$	Describe the relationship between force and extension for a rubber band.	\square	\square	\square
$6^{6 / 2}$	Compare the force-extension relationship for different objects.	\square	\square	\square

SP15b Extension and energy transfers

Step	Learning outcome	Had a look	Nearly there	Nailed it!
5^{5+5}	Recall the equation that links force, extension and the spring constant.	\square	\square	\square
- ${ }_{\text {7 }}$	Use the formula relating force, extension and spring constant.	\square	\square	\square
${ }^{515}$	Recall that work has to be done to stretch a spring.	\square	\square	\square
7	Use the formula relating the energy transferred to the extension of a spring.	\square	\square	\square

SP15c Pressure in fluids

Step	Learning outcome	Had a look	Nearly there	Nailed it!

SP15d Pressure and upthrust

Step	Learning outcome	Had a look	Nearly there	Nailed it!

