SP14 Particle Model

SP14a Particles and density

Step	Learning outcome	Had a look	Nearly there	Nailed it!
6 th	Describe the arrangements of particles in solids, liquids and gases.			
7.0	Use the particle model to explain the different properties of solids, liquids and gases.			
5th	Recall the formula relating density, mass and volume.			
7 th	Use the formula relating density, mass and volume.			
7 th	Use the particle model to explain why solids, liquids and gases have different densities.			
4 th	Describe what happens to the mass of a substance when it changes state.			

SP14b Energy and changes of state

Step	Learning outcome	Had a look	Nearly there	Nailed it!
6 th	Explain how heating affects the particles in a substance or object, including changes of state.			
6 th	Describe how the temperature of an object changes with time while being heated or cooled to make it change state.			
6 th	Define the term specific heat capacity.			
6 th	Define the term specific latent heat.			
8 th	Explain the difference between specific heat capacity and specific latent heat.			
6 th	Explain ways of reducing unwanted energy transfer through thermal insulation.			

SP14c Energy calculations

Step	Learning outcome	Had a look	Nearly there	Nailed it!
8 th	Use the formula relating change in thermal energy, mass, temperature change and specific heat capacity.			
8 th	Use the formula relating thermal energy, mass and specific latent heat.			
6	Recall that the value of specific latent heat for a substance is different for melting/solidifying and for evaporating/condensing.			

SP14d Gas temperature and pressure

Step	Learning outcome	Had a look	Nearly there	Nailed it!
6th	Explain how the movement of particles causes gas pressure.			
6th	Explain how changing the temperature of a gas affects the speed of its particles.			
6 **	Explain how temperature affects the pressure of a fixed mass of gas at constant volume.			
6 th	Explain the significance of absolute zero.			
6 th	Convert temperatures between the Kelvin and Celsius temperature scales.			

SP14e Gas pressure and volume

Step	Learning outcome	Had a look	Nearly there	Nailed it!
6 th	Explain how gases can be compressed or expanded by pressure changes.			
6 th	Explain how the pressure of a gas produces a force at right angles to any surface.			
7 th	Explain why changing the volume of a gas changes the pressure.			
7 th	Use the formula relating pressure and volume changes in a gas of fixed mass at constant temperature.			
7th	Explain why doing work on a gas can increase its temperature.			

SP15 Forces and Matter

SP15a Bending and stretching

Step	Learning outcome	Had a look	Nearly there	Nailed it!
4 th	Explain that more than one force is needed to distort an object.			
4 th	Describe the difference between elastic and inelastic distortion.			
4 th	Describe the relationship between force and extension for a spring.			
4 th	Describe the relationship between force and extension for a rubber band.			
6 th	Compare the force–extension relationship for different objects.			

SP15b Extension and energy transfers

Step	Learning outcome	Had a look	Nearly there	Nailed it!
5 th	Recall the equation that links force, extension and the spring constant.			
7 th	Use the formula relating force, extension and spring constant.			
5th	Recall that work has to be done to stretch a spring.			
7 th	Use the formula relating the energy transferred to the extension of a spring.			

SP15c Pressure in fluids

Step	Learning outcome	Had a look	Nearly there	Nailed it!
7 th	Use a model of the Earth's atmosphere to explain why pressure varies with height.			
5 th	Describe the pressure in a fluid as being due to the fluid and atmospheric pressure.			
6 th	Explain how pressure is related to area and a force normal to the surface.			
5 th	Recall the formula relating force, pressure and area.			
7 th	Use the formula relating force, pressure and area.			
6 th	Describe how pressure in fluids increases with depth and density.			

SP15d Pressure and upthrust

Step	Learning outcome	Had a look	Nearly there	Nailed it!
7 th	Explain why the pressure in a liquid depends on density and depth.			
73	Use the equation relating pressure in a fluid to height, density and gravitational field strength.			
6 th	Explain how upthrust occurs.			
70	Relate the upthrust to the floating or sinking of objects immersed or partially immersed in fluids.			
5 th	Recall that the upthrust is equal to the weight of fluid displaced.			
6 th	Explain the factors that determine whether or not an object will float or sink.			