SP2 Motion and Forces

SP2a Resultant forces

Step	Learning outcome	Had a look	Nearly there	Nailed it!
7 th	Explain the difference between scalar and vector quantities.			
7 th	Use arrows to represent the direction and magnitude of forces.			
6**	Define a resultant force.			
6th	Calculate resultant forces.			
6 th	Explain whether forces on an object are balanced or unbalanced.			

SP2b Newton's First Law

Step	Learning outcome	Had a look	Nearly there	Nailed it!
5 th	Describe the effect of balanced forces on moving and stationary objects.			
6 th	Describe the effect of a non-zero resultant force on moving and stationary objects.			
7 th	Describe circular motion at constant speed as a changing velocity and hence as an acceleration.			
7 th	Describe the force needed to keep an object moving in a circular path.			
8 th	Give some examples of objects moving in circular paths and the type of centripetal force involved.			

SP2c Mass and weight

Step	Learning outcome	Had a look	Nearly there	Nailed it!
4 th	Describe the difference between mass and weight.			
4 th	List the factors that determine the weight of an object.			
4 th	Recall the equation for calculating weight.			
7th	Use the equation relating weight, mass and gravitational field strength.			
4 th	Describe how weight is measured.			
5 th	Describe how the weight of an object is affected by gravitational field strength.			

Sciences

SP2d Newton's Second Law

Step	Learning outcome	Had a look	Nearly there	Nailed it!
6 th	Describe what an acceleration is.			
6 th	List the factors that affect the acceleration of an object.			
6 th	Recall the equation that relates the factors affecting acceleration.			
8**	Use the equation relating force, mass and acceleration.			
9th	Change the subject of the equation relating force, mass and acceleration.			
7 th	Explain what inertial mass means.			

SP2e Newton's Third Law

Step	Learning outcome	Had a look	Nearly there	Nailed it!
7 th	Describe what Newton's Third Law says.			
7 th	Recall the meaning of 'equilibrium situation'.			
8 th	Identify action-reaction pairs in familiar situations.			
8**	Distinguish between action–reaction pairs and balanced forces.			
8**	Describe how objects affect each other when they collide.			

SP2f Momentum

Step	Learning outcome	Had a look	Nearly there	Nailed it!
7 th	Describe the factors that affect the momentum of an object.			
9th	Calculate the momentum of moving objects.			
81	Describe examples of momentum in collisions.			
9 th	Use the idea of conservation of momentum to calculate velocities of objects after collisions.			
10 th	Calculate the force needed to produce a change in momentum in a given time.			

SP2g Stopping distances

Step	Learning outcome	Had a look	Nearly there	Nailed it!
5 th	Describe how human reaction times are measured.			
5th	Recall typical human reaction times.			
5**	Describe the link between stopping distance, thinking distance and braking distance.			
5 th	Recall the factors that affect stopping distances.			
6 th	Describe how different factors affect stopping distances.			

SP2h Braking distances and energy

Step	Learning outcome	Had a look	Nearly there	Nailed it!
20	Estimate the braking distance of a road vehicle given its mass, speed and braking force.			
6 th	Explain what 'work done' means.			
7 th	Calculate the work done when a force moves through a distance.			
5 th	Describe the factors that affect the kinetic energy of a moving object.			
9 th	Calculate the kinetic energy of a moving object.			

SP2i Crash hazards

Step	Learning outcome	Had a look	Nearly there	Nailed it!
10th	Calculate the force needed to produce a change in momentum in a given time.			
7 th	Explain the meaning of a 'large deceleration'.			
6 th	Describe the dangers caused by large decelerations.			
7 th	Explain why large decelerations cause dangers.			
7 th	Recall some typical forces involved in road collisions.			
9th	Use knowledge of changes in momentum to estimate the forces involved in road collisions.			